Peer-Programming a Buggy World with ChatGPT AI

AI has been all the rage lately, with solutions like Stable Diffusion for image generation, GPT-3 for text generation, and CoPilot for code development becoming publicly available to the masses.

That excitement ramped up this week with the release of ChatGPT, an extremely impressive chat-based AI system leveraging the best GPT has to offer.

I decided last night to take ChatGPT for a spin, to test its code-generation capabilities. And I was astonished by the experience.

Together, we built a simulation of bugs foraging for food in a 100×100 grid world, tracking essentials like hunger and life, reproducing, and dealing with hardships involving seasonal changes, natural disasters, and predators. All graphically represented.

We’re going to explore this in detail, but I want to start off by showing you what we built:

Also, you can find out more on my GitHub repository

A Recap of my Experience

Before we dive into the collaborative sessions that resulted in a working simulation, let me share a few thoughts and tidbits about my experience:

Scratching Out AI Chicken Art with Stable Diffusion

I’ve been enjoying playing with Stable Diffusion, an AI image generator that came out this past week. It runs phenomenally on my M1 Max Macbook Pro with 64GB of RAM, taking only about 30 seconds to produce an image at standard settings.

AI image generation has been a controversial, but exciting, topic in the news as of late. I’ve been following it with interest, but thought I was still years off from being able to actually play with it on my own hardware. That all changed this week.

I’m on day two now with Stable Diffusion, having successfully installed the M1 support via a fork. And my topic to get my feet wet has been…


Why not.

So let’s begin our tour. I’ll provide prompts and pictures, but please not I do not have the seeds (due to a bug with seed stability in the M1 fork).

Scroll to Top